翻訳と辞書
Words near each other
・ Binomial approximation
・ Binomial coefficient
・ Binomial differential equation
・ Binomial distribution
・ Binomial heap
・ Binomial identity
・ Binomial inverse theorem
・ Binomial nomenclature
・ Binomial number
・ Binomial options pricing model
・ Binomial pair
・ Binomial proportion confidence interval
・ Binomial QMF
・ Binomial regression
・ Binomial ring
Binomial series
・ Binomial sum variance inequality
・ Binomial test
・ Binomial theorem
・ Binomial transform
・ Binomial type
・ Binomial voting system
・ Binomio de Oro de América
・ Binondo
・ Binondo Church
・ Binos
・ Binospirone
・ Binot Paulmier de Gonneville
・ Binovac
・ Binovce (Surdulica)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Binomial series : ウィキペディア英語版
Binomial series

In mathematics, the binomial series is the Maclaurin series for the function f given by f(x)=(1+x)^, where \alpha \in \mathbb is an arbitrary complex number. Explicitly,
:\begin (1 + x)^\alpha &= \sum_^ \; \; x^k \qquad\qquad\qquad (1) \\ &= 1 + \alpha x + \frac x^2 + \cdots, \end
and the binomial series is the power series on the right hand side of (1), expressed in terms of the (generalized) binomial coefficients
: := \frac.
== Special cases ==

If α is a nonnegative integer ''n'', then the (''n'' + 2)th term and all later terms in the series are 0, since each contains a factor (''n'' − ''n''); thus in this case the series is finite and gives the algebraic binomial formula.
The following variant holds for arbitrary complex ''β'', but is especially useful for handling negative integer exponents in (1):
:\frac^z^k.
To prove it, substitute ''x'' = −''z'' in (1) and apply a binomial coefficient identity, which is,
: = (-1)^k .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Binomial series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.